1. Rachael is flying from Ohio (O) to Dallas (D) with a layover in Baltimore (B). This is displayed in the diagram below.

Not to scale.

Her flight leaves Ohio on a bearing of 100° and travels 650 km to Baltimore. After changing planes in Baltimore, Rachael's flight leaves for Dallas on a bearing of 235° and travels 2200 km .
(a) Find $O \hat{B} D$.
(2 marks)
(b) (i) If Rachael had found a direct flight from Ohio to Dallas, find the distance of that flight.
(ii) Find the bearing of that direct flight to Dallas from Ohio.
(3 marks)

Mark scheme:
(a) Methods vary.

$$
\begin{align*}
& 180^{\circ}-100^{\circ}=80^{\circ} \tag{M1}\\
& 360^{\circ}-235^{\circ}-80^{\circ}=45^{\circ} \tag{A1}\\
& O \widehat{B} D=45^{\circ}
\end{align*}
$$

(b) (i) Using the Cosine rule
$O D^{2}=650^{2}+2200^{2}-2 \cdot 650 \cdot 2200 \cos 45^{\circ}$
$O D=1800.049 \approx 1800 \mathrm{~km}$
(ii) Finding $D \widehat{O} B$

Sine rule: $\frac{2200}{\sin D \hat{O} B}=\frac{1800}{\sin 45^{\circ}}$
$D \hat{O} B \approx 59.8^{\circ}$, but needing to find a quadrant 2 angle,
$180^{\circ}-59.8^{\circ}=120.2^{\circ} \quad$ or
Cosine rule: $\cos D \hat{O} B=\frac{650^{2}+1800^{2}-2200^{2}}{2 \cdot 650 \cdot 1800}$

$$
\begin{equation*}
D \widehat{O} B=120.2^{\circ} \tag{A1}
\end{equation*}
$$

Adding this angle to the original bearing of 100°,
$100^{\circ}+120.2^{\circ}=220.2^{\circ} \approx 220^{\circ}$
is the bearing from Ohio to Dallas.

