1P TEXAS
INSTRUMENTS

TI-Nspire™ Program Editor
Guidebook

Learn more about Tl Technology through the online help at education.ti.com/eguide.



https://education.ti.com/eguide

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas
Instruments makes no warranty, either express or implied, including but not limited to
any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely
on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special,
collateral, incidental, or consequential damages in connection with or arising out of the
purchase or use of these materials, and the sole and exclusive liability of Texas
Instruments, regardless of the form of action, shall not exceed the amount set forth in
the license for the program. Moreover, Texas Instruments shall not be liable for any
claim of any kind whatsoever against the use of these materials by any other party.

© 2020 Texas Instruments Incorporated

The TI-Nspire™ software uses Lua as scripting environment. For copyright and license
information, see http://www.lua.org/license.html.

The TI-Nspire™ software uses Chipmunk Physics version 5.3.4 as simulation
environment. For license information, see http://chipmunk-
physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the
United States and/or other countries.

Mac 0S®, iPad® and OS X® are registered trademarks of Apple Inc.

Unicode® is a registered trademark of Unicode, Inc. in the United States and other
countries.

Actual products may vary slightly from provided images.




Contents

Getting Started with the Program Editor ___. .. ... . _ ... . ... . _........... 1
Defining a Program or FUNCtion . .. .. 2
Viewing a Program or FUNCtioN . e 5
Opening a Function or Program for Editing ... ... ... ... .. . . .. ... .......... 6
Importing a Program from a Library ... ... ... ... 6
Creating a Copy of a Function or Program .. ... ... .. .. .. ... 6
Renaming a Program or Function ... ... ... . .. ... iieaaao. 7
Changing the Library Access Level .. .. .. . 7
FINding TeXt e 7
Finding and Replacing Text ... ... e 8
Closing the Current Function or Program .. ... ... o, 8
Running Programs and Evaluating Functions ... . ... . ... . ... ... .. ... ..... 8
Getting Values into a Program . ... ... ... e 11
Displaying Information from a Function or Program . ... .. .. .. ... .. ........ 14
Using Local Variables . ... .. . 16
Differences Between Functions and Programs ... ... . .. .. .. .. ... .. .. ..... 18
Calling One Program from Another .. . .. 19
Controlling the Flow of a Function or Program ... __ ... .. .. . ... ... ... ....... 20
Using If, Lbl, and Goto to Control Program Flow __ ... ... . ... e 20
Using Loops to Repeat a Group of Commands ... .. ... . ... ... ...... 23
Changing Mode Settings ... ... ... . i 27
Debugging Programs and Handling Errors . ... .. ... .. ... 27

General Information ... 29

i



Getting Started with the Program Editor

You can create user-defined functions or programs by typing definition statements on
the Calculator entry line or by using the Program Editor. The Program Editor offers
some advantages, and it is covered in this section. For more information, see
Calculator.

e The editor has programming templates and dialog boxes to help you define
functions and programs using correct syntax.

e The editor lets you enter multiple-line programming statements without requiring
a special key sequence to add each line.

* You can easily create private and public library objects (variables, functions, and
programs). For more information, see Libraries.

e Syntax highlighting provides visual aid for different program elements as follows:
Keywords/built-in commands in blue, Operators in red, Strings in green, Comments
in gray, and numbers in black.

Note: In most cases, functionality is identical between the Computer and the Handheld
views. You may see some differences between computing platforms.

Launching the Program Editor
» Toadd a new Program Editor page in the current problem:

From the toolbar, click Insert > Program Editor > New.
Handheld: Press and select Insert > Program Editor > New.

Note: The editor is also accessible from the Functions & Programs menu of a
Calculator page.

Documents Toolbox

38 . -7 A - .
Pl ® ! m o m =
Program Editor x
4 1Actions , * cube (3] 11
2:Check Syntax & Store , Define cube 0:
+ = 3:Define Variables » Prgm
If... 4:Control 3 3
1 sTransrers (1] v return n ‘
Hoswo ’ EndPrgm (2]
15737 Mode 3
— 8HuD ,
gDraw »

“ Program Editor menu — This menu is available anytime you are in the Program Editor
work area using the Normal view mode.

1 Getting Started with the Program Editor



@ Program Editor work area

Status line shows line-number information and the name of the function or program

© being edited. An asterisk (*) indicates that this function is “dirty,” which means that
it has changed since the last time its syntax has been checked and it has been stored.

Defining a Program or Function

Starting a new Program Editor

1.

Make sure you are in the document and problem in which you want to create the

program or function.
Click Insert button ]

(On the handheld, press and select Insert > Program Editor > New.)
& New X

Name: |

Type: IP'rogram =

Library Access: INone |

| OK H Cancel ‘

Type a name for the function or program you are defining.
Select the Type (Program or Function).
Set the Library Access:

- To use the function or program only from the current document and problem,
select None.

on the application toolbar, and select Program Editor > New.

- To make the function or program accessible from any document but not visible

in the Catalog, select LibPriv.

- To make the function or program accessible from any document and also
visible in the Catalog, select LibPub (Show in Catalog). For more information,
see Libraries.

Click OK.

A new instance of the Program Editor opens, with a template matching the
selections you made.

prgm1 1n
Define prgm1 0:
Prgm

EndPrgm

Getting Started with the Program Editor

2



Entering Lines into a Function or Program

The Program Editor does not execute the commands or evaluate expressions as you
type them. They are executed only when you evaluate the function or run the program.

1.

If your function or program will require the user to supply arguments, type
parameter names in the parentheses that follow the name. Separate parameters
with a comma.

*prgm1 01
Define prgm1 (a,bD=
Prgm

EndPrgm

Between the Func and EndFunc (or Prgm and EndPrgm) lines, type the lines of
statements that make up your function or program.

*prgm1 3/3
Define prgml(a,b):

Prgm

Disp "a=",a
Disp "b=",b
Disp "a'“b:“,ab‘
EndPrgm

- You can either type the names of functions and commands or insert them from
the Catalog.

- Aline can be longer than the width of the screen; if so, you might have to scroll
to view the entire statement.

- After typing each line, press Enter. This inserts a new blank line and lets you
continue entering another line.

- Usethe «, », A, and V¥ arrow keys to scroll through the function or program
for entering or editing commands.

Inserting Comments

Comments can be useful to someone viewing or editing the program. They are not
displayed when the program runs and have no effect on program flow. The © symbol
displays at the beginning of the line with the comment.

3 Getting Started with the Program Editor



*voleyl 3/3
Define LibPub volcyl (ht,r):

Prgm

©voleyl(ht,r) => volume of cylinder @

Disp " Volume=" ,approx(w 2 ht)
©This is another c«ivmment.‘
EndPrgm

Comment showing required syntax. Because this library object is public and this
@ comment is the first line in a Func or Prgm block, the comment is displayed in the
Catalog as help. For more information, see Libraries.

To insert a comment:

1. Position the cursor at the end of the line in which you want to insert a comment.
2. From the Actions menu, click Insert Comment, or press Ctrl+T.

3. Type the text of the comment after the © symbol.

Checking Syntax

The Program Editor lets you check the function or program for correct syntax.

» From the Check Syntax & Store menu, click Check Syntax.

If the syntax checker finds any syntax errors, it displays an error message and tries
to position the cursor near the first error so you can correct it.

*prgm1 33

Define prgm| e x
Prgm

Disp "a=",a
Disp "b=",b

Disp "a"b="}
EndPrgm

|syntax

<]
B

le

Storing the Function or Program

You must store your function or program to make it accessible. The Program Editor
automatically checks the syntax before storing.

Getting Started with the Program Editor

4



An asterisk (*) is displayed in the upper left corner of the Program Editor to indicate
that the function or program has not been stored.

> From the Check Syntax & Store menu, click Check Syntax & Store.

If the syntax checker finds any syntax errors, it displays an error message and tries
to position the cursor near the first error.

If no syntax errors are found, the message “Stored successfully” is displayed in the
status line at the top of the Program Editor.

Note: If the function or program is defined as a library object, you must also save the
document in the designated library folder and refresh libraries to make the object
accessible to other documents. For more information, see Libraries.

Viewing a Program or Function

1. From the Actions menu, click View.

@ View x

Location

MName: |prgm1 - |

| OK H Cancel |

2. If the function or program is a library object, select its library from the Location list.

3. Select the function or program name from the Name list.

The function or program is displayed in a viewer.

funci 0N
Define funcl(n_)z
Func
Return n 3 +16
EndFunc
Edit Cancel

4. Use the arrow keys to view the function or program.

5. If you want to edit the program, click Edit.

Handheld: Press to highlight Edit, and then press [enter].

5 Getting Started with the Program Editor



Note: The Edit selection is available only for functions and programs defined in the
current problem. To edit a library object, you must first open its library document.

Opening a Function or Program for Editing
You can open a function or program from the current problem only.

Note: You cannot modify a locked program or function. To unlock the object, go to a
Calculator page and use the unLock command.

1. Display the list of available functions and programs.

- From the Actions menu, click Open.

1:funci
fied  2:func2

010 -.
101 3-prgmi

2. Click the item to open.
Importing a Program from a Library

You can import a function or program defined as a library object into a Program Editor
within the current problem. The imported copy is not locked, even if the original is
locked.

1. From the Actions menu, click Import.

& Import *

Name: |check_type_arg - |

Import As: It:hceci-cj;§f;)e7argq |

|~0K~| |~cancsl

Select the Library Name.
Select the Name of the object.

4. If you want the imported object to have a different name, type the name under
Import As.

Creating a Copy of a Function or Program

When creating a new function or program, you might find it easier to start with a copy
of the current one. The copy that you create is not locked, even if the original is locked.

1. From the Actions menu, click Create Copy.

Getting Started with the Program Editor 6



2. Type a new name, or click OK to accept the proposed name.

3. If you want to change the access level, select Library Access, and select a new
level.

Renaming a Program or Function

You can rename and (optionally) change the access level of the current function or
program.

1. From the Actions menu, click Rename.

Rename X
®

Name: [funct |

Rename As:

Library Access: INone

| OK H Cancel ‘

2. Type a new name, or click OK to accept the proposed name.

3. If you want to change the access level, select Library Access, and select a new
level.

Changing the Library Access Level

1. From the Actions menu, click Change Library Access.

& Change Library Access X

Library Access: [Mone -

| oK H Cancel |

2. Select the Library Access:

- To use the function or program only from the current Calculator problem, select
None.

- To make function or program accessible from any document but not visible in
the Catalog, select LibPriv.

- To make the function or program accessible from any document and also
visible in the Catalog, select LibPub.

Finding Text

1. From the Actions menu, click Find.

Find X
®

Find: |

| oK || Cancel

7 Getting Started with the Program Editor



2. Type the text that you want to find, and click OK.
- If the text is found, it is highlighted in the program.

- If the text is not found, a notification message is displayed.
Finding and Replacing Text

1. From the Actions menu, click Find and Replace.

@ Replace x

Find: | |

Replace: |

| Replace H Replace All || Cancel ‘

2. Type the text that you want to find.
Type the replacement text.

4. Click Replace to replace the first occurrence after the cursor position.
—or—
Click Replace All to replace every occurrence.

Note: If the text is found in a math template, a message is displayed to warn you
that your replacement text will replace the whole template—not just the found
text.

Closing the Current Function or Program
» From the Actions menu, click Close.

If the function or program has unstored changes, you are prompted to check syntax
and store before closing.

Running Programs and Evaluating Functions

After defining and storing a program or function, you can use it from an application. All
the applications can evaluate functions, but only the Calculator and Notes applications
can run programs.

The program statements are executed in sequential order (although some commands
alter the program flow). The output, if any, is displayed in the application’s work area.

* Program execution continues until it reaches the last statement or a Stop
command.

e Function execution continues until it reaches a Return command.
Running a Program or Function from the Program Editor

1. Make sure you have defined a program or function and the Program Editor is the
active pane (computer) or page (handheld).

Getting Started with the Program Editor 8



o
2. On the toolbar, click the Document Tools button &’L\a and select Check Syntax &
Store > Run.

—or—
Press Ctrl+R.

Handheld: Press (3), or press [en] (R].
This will automatically:

e check the syntax and store the program or function,

e paste the program or function name on the first available line of the Calculator
application immediately following the Program Editor. If no Calculator exists in
that position, a new one is inserted.

prgml()

3. If the program or function requires you to supply one or more arguments, type the
values or variable names inside the parentheses.

4. Press [enter],

Note: You can also run a program or function in Calculator or Notes applications by
typing the name of the program with parentheses and any required arguments and

pressing [enter],
Using Short and Long Names

Anytime you are in the same problem where an object is defined, you can access it by
entering its short name (the name given in the object’s Define command). This is the
case for all defined objects, including private, public, and non-library objects.

You can access a library object from any document by typing the object’s long name. A
long name consists of the name of the object’s library document followed by a
backslash “\” followed by the name of the object. For example, the long name of the
object defined as funcl in the library document lib1 is lib1\funcl. To type the “\”

character on the handheld, press (=).

Note: If you cannot remember the exact name or the order of arguments required for a
private library object, you can open the library document or use the Program Editor to
view the object. You also can use getVarinfo to view a list of objects in a library.

9 Getting Started with the Program Editor



Using a Public Library Program or Function

1. Make sure you have defined the object in the document’s first problem, stored the
object, saved the library document in the MyLib folder, and refreshed the libraries.

2. Open the TI-Nspire™ application in which you want to use the program or function.

Note: All applications can evaluate functions, but only the Calculator and Notes
applications can run programs.

3. Open the Catalog and use the library tab to find and insert the object.
—or—
Type the name of the object. In the case of a program or function, always follow
the name with parentheses.

libs2\func1()

4. If the program or function requires you to supply one or more arguments, type the
values or variable names inside the parentheses.

libs2\func1(34,power)

5. Press [enter].

Using a Private Library Program or Function

To use a Private library object, you must know its long name. For example, the long
name of the object defined as funcl in the library document lib1 is lib1\func1.

Note: If you cannot remember the exact name or the order of arguments required for a
private library object, you can open the library document or use the Program Editor to
view the object.

1. Make sure you have defined the object in the document’s first problem, stored the
object, saved the library document in the MyLib folder, and refreshed the libraries.

2. Open the TI-Nspire™ application in which you want to use the program or function.

Note: All applications can evaluate functions, but only the Calculator and Notes
applications can run programs.

3. Type the name of the object. In the case of a program or function, always follow
the name with parentheses.

libs2\funcl()

4. If the object requires you to supply one or more arguments, type the values or
variable names inside the parentheses.

libs2\func1(34,power)

5. Press [enter],

Interrupting a Running Program or Function

While a program or function is running, the busy pointer ® is displayed.

Getting Started with the Program Editor 10



» To stop the program or function,

- Windows®: Hold down the F12 key and press Enter repeatedly.
- Mac®: Hold down the F5 key and press Enter repeatedly.

- Handheld: Hold down the key and press repeatedly.

A message is displayed. To edit the program or function in the Program Editor,
select Go To. The cursor appears at the command where the break occurred.

Getting Values into a Program

You can choose from several methods to supply the values that a function or program
uses in calculations.

Embedding the Values Within the Program or Function

This method is useful primarily for values that must be the same each time the
program or function is used.

1. Define the program.

* calculatearea 4/4
Define calculatearea O:
Prgm

w:=3
h:=23.64
area:=w- h
Disp area
EndPrgm

2. Run the program.

calcularearea()
70.92

Done

11 Getting Started with the Program Editor



Letting the User Assign the Values to Variables

A program or function can refer to variables created beforehand. This method requires
users to remember the variable names and to assign values to them before using the
object.

1. Define the program.

* calculatearea 2/2
Define calculatearea O:

Prgm

area:=w- h

Disp area

EndPrgm

2. Supply the variables, and then run the program.

w:=3 3
h:=23.64 23.64
Calcularearea()
70.92
Done

Letting the User Supply the Values as Arguments

This method lets users pass one or more values as arguments within the expression
that calls the program or function.

The following program, volcyl, calculates the volume of a cylinder. It requires the user
to supply two values: height and radius of the cylinder.

1. Define the volcyl program.

Getting Started with the Program Editor 12



*voleyl n
Define volcyl (height,radius):
Prgm

Disp " Volume =", approx(ﬂt- radius>- height)‘
EndPrgm

2. Run the program to display the volume of a cylinder with a height of 34 mm and a
radius of 5 mm.

valcyl(34,5)
Volume =2670.35

Done

Note: You do not have to use the parameter names when you run the volcyl
program, but you must supply two arguments (as values, variables, or expressions).
The first must represent the height, and the second must represent the radius.

Requesting the Values from the User (Programs Only)

You can use the Request and RequestStr commands in a program to make the program
pause and display a dialog box prompting the user for information. This method does
not require users to remember variable names or the order in which they are needed.

You cannot use the Request or RequestStr command in a function.

1. Define the program.

13 Getting Started with the Program Editor



* calculatearea 3/3
Define calculatearea O:
Prgm

Request "Width: ", w
Request "Height: ", h
area:=w- I

EndPrgm

2. Run the program and respond to the requests.

calcularearea(): area
Width: 3
Height: 23.64
70.92

Use RequestStr instead of Request when you want the program to interpret the user’s
response as a character string rather than a math expression. This avoids requiring the

user to enclose the response in quotation marks (““).
Displaying Information from a Function or Program

A running function or program does not display intermediate calculated results unless
you include a command to display them. This is an important difference between
performing a calculation on the entry line and performing it in a function or program.

The following calculations, for example, do not display a result in a function or
program (although they do from the entry line).

Getting Started with the Program Editor 14



prgm2

0/2)

Define prgm2 O:‘
Prgm
x:=12:6

"

EndPrgm

Displaying Information in the History

You can use the Disp command in a program or function to display information,

including intermediate results, in the history.

EndPrgm

*prgm2 212
Define prgm2 O:
Prgm
Disp 12-6
bLs
Disp "Result: " ,cos Z

Displaying Information in a Dialog Box

You can use the Text command to pause a running program and display information in
a dialog box. The user clicks OK to continue or clicks Cancel to stop the program.

You cannot use the Text command in a function.

* sample

111

Define sample O=
Prgm

Text "Area=" & area|
EndPrgm

15 Getting Started with the Program Editor



Note: Displaying a result with Disp or Text does not store that result. If you expect to
refer later to a result, store it to a global variable.

* sample 2/2)

Define sample O:

Prgm
cos(m’4) — maximum
Disp maximuml
EndPrgm
sampleo
0.707107
Done

Using Local Variables

A local variable is a temporary variable that exists only while a user-defined function is
being evaluated or a user-defined program is running.

Example of a Local Variable

The following program segment shows a For...EndFor loop (which is discussed later in this
module). The variable i is the loop counter. In most cases, the variable i is used only while
the program is running.

Getting Started with the Program Editor 16



* loop_prog

0/5

Define loop_prog O:|
Prgm
Locali @
For i,0,5,1
Disp i
EndFor
Disp i
EndPrgm

@ Declares variable i as local.

Note: When possible, declare as local any variable that is used only within the program
and does not need to be available after the program stops.

What Causes an Undefined Variable Error Message?

An Undefined variable error message is displayed when you evaluate a user-defined
function or run a user-defined program that references a local variable that is not

initialized (assigned a value).

For example:

* fact

5/5

Define fact(n):

Func

Localm @

While n>1
n-m-—-m:n—1-n

EndWhile

Return m‘

EndFunc

@ Local variable m is not assigned an initial value.

Initialize Local Variables

All local variables must be assigned an initial value before they are referenced.

17 Getting Started with the Program Editor



*fact 5/5
Define fact(n):
Func
Localm: 1-m @
While n>1
n-m-mn-1-n
EndWhile
Return m‘
EndFunc

@ 1isstored as the initial value for m.

Note (CAS): Functions and programs cannot use a local variable to perform symbolic
calculations.

CAS: Performing Symbolic Calculations

If you want a function or program to perform symbolic calculations, you must use a
global variable instead of a local. However, you must be certain that the global variable
does not already exist outside of the program. The following methods can help.

e Refer to a global variable name, typically with two or more characters, that is not
likely to exist outside of the function or program.

¢ Include DelVar within a program to delete the global variable, if it exists, before
referring to it. (DelVar does not delete locked or linked variables.)

Differences Between Functions and Programs

A function defined in the Program Editor is similar to the functions built into the TI-
Nspire™ Software.

e Functions must return a result, which can be graphed or entered in a table.
Programs do not return a result.

* You can use a function (but not a program) within an expression. For example: 3 ¢
func1(3) is valid, but not 3 ¢ prog1(3).

* You can run programs from Calculator and Notes applications only. However, you
can evaluate functions in Calculator, Notes, Lists & Spreadsheet, Graphs &
Geometry, and Data & Statistics.

e A function can refer to any variable; however, it can store a value to a local variable
only. Programs can store to local and global variables.

Note: Arguments used to pass values to a function are treated as local variables
automatically. If you want to store to any other variables, you must declare them
as Local from within the function.

e A function cannot call a program as a subroutine, but it can call another user-
defined function.

Getting Started with the Program Editor 18



* You cannot define a program within a function.

e A function cannot define a global function, but it can define a local function.
Calling One Program from Another

One program can call another program as a subroutine. The subroutine can be external
(a separate program) or internal (included in the main program). Subroutines are
useful when a program needs to repeat the same group of commands at several
different places.

Calling a Separate Program

To call a separate program, use the same syntax that you use to run the program from
the entry line.

Define subtestl()=

Prgm Define subtest2(x,y)=
For i,1,4,1 Prgm
subtest2(i,1%1008) Disp x,y

EndFor €————— EndPrgm
EndPrgm

Defining and Calling an Internal Subroutine

To define an internal subroutine, use the Define command with Prgm...EndPrgm.
Because a subroutine must be defined before it can be called, it is a good practice to
define subroutines at the beginning of the main program.

An internal subroutine is called and executed in the same way as a separate program.

* subtest1 9/9
Define subtestl():
Prgm

Local subtest2 @

Define subtest2(xy) @

Prgm

Disp x,v

EndPrgm
© Beginning of main program
Fori,1,4,1

subtest2(i,i- 1000) ©
EndFoﬂ
EndPrgm

N

@ Declares the subroutine as a local variable.
@ Defines the subroutine.

@ Calls the subroutine.

19 Getting Started with the Program Editor



Note: Use the Program Editor’s Var menu to enter the Define and Prgm...EndPrgm
commands.

Notes about Using Subroutines

At the end of a subroutine, execution returns to the calling program. To exit a
subroutine at any other time, use Return with no argument.

A subroutine cannot access local variables declared in the calling program. Likewise,
the calling program cannot access local variables declared in a subroutine.

Lbl commands are local to the programs in which they are located. Therefore, a Goto

command in the calling program cannot branch to a label in a subroutine or vice versa.

Avoiding Circular-Definition Errors

When evaluating a user-defined function or running a program, you can specify an
argument that includes the same variable that was used to define the function or

create the program. However, to avoid circular-definition errors, you must assign a
value for variables that are used in evaluating the function or running the program.
For example:

xtlox @

—or—

For i,i,10,1
Disp i @

EndFor

o Causes a Circular definition error message if x or i does not have a value. The error
does not occur if x or i has already been assigned a value.

Controlling the Flow of a Function or Program

When you run a program or evaluate a function, the program lines are executed in
sequential order. However, some commands alter the program flow. For example:

e Control structures such as If...Endlf commands use a conditional test to decide
which part of a program to execute.

e Loop commands such as For...EndFor repeat a group of commands.
Using If, Lbl, and Goto to Control Program Flow

The If command and several If...EndIf structures let you execute a statement or block
of statements conditionally, that is, based on the result of a test (such as x>5). Lbl
(label) and Goto commands let you branch, or jump, from one place to another in a
function or program.

The If command and several If...EndIf structures reside on the Program Editor’s Control

menu.

Getting Started with the Program Editor

20



When you insert a structure such as If...Then...EndIf, a template is inserted at the
cursor location. The cursor is positioned so that you can enter a conditional test.

If Command

To execute a single command when a conditional test is true, use the general form:

If x=5
Disp "x is greater than 5" @
Dispx @

@ Executed only if x>5; otherwise, skipped.

9 Always displays the value of x.

In this example, you must store a value to x before executing the If command.
If...Then...EndIf Structures
To execute one group of commands if a conditional test is true, use the structure:
[f x=5 Then
Disp "x 1s greater than 5" @
2xoax
EndIf
Dispx O
@ Executed only if x>5.

Displays the value of:
@A 2xifx>5
x if x<5

Note: EndIf marks the end of the Then block that is executed if the condition is true.
If...Then...Else...EndIf Structures

To execute one group of commands if a conditional test is true and a different group if
the condition is false, use this structure:

21 Getting Started with the Program Editor



If x>5 Then
Disp "x 15 greater than 5" @
2x-x @
Else
Disp "x is less than or equal to 5" @
Forox @
EndIf
Disp x @

@ Executed only if x>5.

@ Executed only if x<5.

Displays value of:
® 2xifx>5
5x if x<5

If...Then...Elself... EndIf Structures

A more complex form of the If command lets you test for multiple conditions. Suppose
you want a program to test a user-supplied argument that signifies one of four
options.

To test for each option (If Choice=1, If Choice=2, and so on), use the
If...Then...Elself...EndIf structure.

Lbl and Goto Commands

You can also control the flow by using Lbl (label) and Goto commands. These
commands reside on the Program Editor’s Transfers menu.

Use the Lbl command to label (assign a name to) a particular location in the function
or program.

Lbl [abelName name to assign to this location (use the same
naming convention as a variable name)

You can then use the Goto command at any point in the function or program to branch
to the location that corresponds to the specified label.

Goto [abelName specifies which Lbl command to branch to

Because a Goto command is unconditional (it always branches to the specified label),
it is often used with an If command so that you can specify a conditional test. For
example:

Getting Started with the Program Editor 22



If x=5
Goto GT5 @
Disp x

Lbl GT5 @

Disp "The number was = 5"

@ 'f x>5, branches directly to label GT5.
o For this example, the program must include commands (such as Stop) that prevent
Lbl GT5 from being executed if x<5.

Using Loops to Repeat a Group of Commands

To repeat the same group of commands successively, use one of the loop structures.
Several types of loops are available. Each type gives you a different way to exit the
loop, based on a conditional test.

Loop and loop-related commands reside on the Program Editor’s Control and Transfers
menus.

When you insert one of the loop structures, its template is inserted at the cursor
location. You can then begin entering the commands that will be executed within the
loop.

For...EndFor Loops

A For...EndFor loop uses a counter to control the number of times the loop is repeated.
The syntax of the For command is:

variable, begin, end [, increment ]

f @ @® © (4]

@ Name of a variable to be used as a counter

@ Value assigned to variable when the For loop begins.

(3} Value compared to the current value of variable at each iteration of the loop. The
loop exits when variable exceeds end.

o Value added to variable at each iteration of the loop (This argument is optional. The
default increment is 1.)

At each iteration of the For loop, the variable value is compared to the end value. If
variable does not exceed end, the commands within the For...EndFor loop are executed
and the loop repeats; otherwise, control jumps to the command following EndFor.

23 Getting Started with the Program Editor



1.0
- F?-r:.“.i]
j=s
EndFor
I ——

Note: The For command automatically increments the counter variable so that the
function or program can exit the loop after a certain number of repetitions.

At the end of the loop (EndFor), control loops back to the For command, where the
counter variable is incremented and compared to end.

For example:
For i,0,5,1
Disp i @
EndFor
Dispi @
@ Displays0, 1, 2, 3,4, and 5.

@ Displays 6. When variable increments to 6, the loop is not executed.

Notes:

* You can declare variable as local if it does not need to be saved after the function

or program stops.

* You can set end to a value less than begin, provided you also set increment to a

negative value.
While...EndWhile Loops

A While...EndWhile loop repeats a block of commands as long as a specified condition

is true. The syntax of the While command is:
While condition

When While is executed, condition is evaluated. If condition is true, the loop is
executed; otherwise, control jumps to the command following EndWhile.

—— — While x<3 -y
- | ______
X 25 e
EndWhile —
—_———————

Note: The While command does not automatically change the condition. You must
include commands that allow the function or program to exit the loop.

Getting Started with the Program Editor

24



At the end of the loop (EndWhile), control jumps back to the While command, where
condition is re-evaluated.

To execute the loop the first time, the condition must initially be true.

Any variables referenced in the condition must be set before the While command.
(You can build the values into the function or program, or you can prompt the user
to enter the values.)

The loop must contain commands that change the values in the condition,
eventually causing it to be false. Otherwise, the condition is always true and the
function or program cannot exit the loop (called an infinite loop).

For example:

Oy
While x<5

Dispx @
xilex @

EndWhile
Disp x @

© Initially sets x.

@ Displays 0, 1, 2, 3, and 4.

© Increments x.

@ Displays 5. When x increments to 5, the loop is not executed.

Loop...EndLoop Loops

A Loop...EndLoop creates an infinite loop, which is repeated endlessly. The Loop
command does not have any arguments.

Loop B

Typically, you insert commands in the loop that let the program exit from the loop.
Commonly used commands are: If, Exit, Goto, and Lbl (label). For example:

25 Getting Started with the Program Editor



O—x
Loop
Disp x
X+l —+x
Ifx=5 @
Eaat

EndLoop
Dispx @

@ An If command checks the condition.

@ Exits the loop and jumps to here when x increments to 6.

Note: The Exit command exits from the current loop.

In this example, the If command can be anywhere in the loop.

When the If command is: The loop is:

At the beginning of the Executed only if the condition is true.
loop

At the end of the loop Executed at least once and repeated only if the condition
is true.

The If command could also use a Goto command to transfer program control to a
specified Lbl (label) command.

Repeating a Loop Immediately

The Cycle command immediately transfers program control to the next iteration of a
loop (before the current iteration is complete). This command works with For...EndFor,
While...EndWhile, and Loop...EndLoop.

Lbl and Goto Loops

Although the Lbl (label) and Goto commands are not strictly loop commands, they can
be used to create an infinite loop. For example:

Lbl START -

Goto START & — |

As with Loop...EndLoop, the loop should contain commands that let the function or
program exit from the loop.

Getting Started with the Program Editor 26



Changing Mode Settings

Functions and programs can use the setMode() function to temporarily set specific
calculation or result modes. The Program Editor’'s Mode menu makes it easy to enter
the correct syntax without requiring you to memorize numeric codes.

Note: Mode changes made within a function or program definition do not persist
outside the function or program.

Setting a Mode
1. Position the cursor where you want to insert the setMode function.

2. From the Mode menu, click the mode to change, and click the new setting.

The correct syntax is inserted at the cursor location. For example:

setMode(1,3)

Debugging Programs and Handling Errors

After you write a function or program, you can use several techniques to find and
correct errors. You can also build an error-handling command into the function or
program itself.

If your function or program allows the user to select from several options, be sure to
run it and test each option.

Techniques for Debugging

Run-time error messages can locate syntax errors but not errors in program logic. The
following techniques may be useful.

e Temporarily insert Disp commands to display the values of critical variables.

e To confirm that a loop is executed the correct number of times, use Disp to display
the counter variable or the values in the conditional test.

e To confirm that a subroutine is executed, use Disp to display messages such as
“Entering subroutine” and “Exiting subroutine” at the beginning and end of the
subroutine.

e Tostop a program or function manually,
- Windows®: Hold down the F12 key and press Enter repeatedly.
- Mac®: Hold down the F5 key and press Enter repeatedly.
- Handheld: Hold down the key and press repeatedly.
Error-handling Commands

Command Description

Try...EndTry | Defines a block that lets a function or program execute a command
and, if necessary, recover from an error generated by that command.

27 Getting Started with the Program Editor



Command

Description

ClrErr Clears the error status and sets system variable errCode to zero. For an
example of using errCode, see the Try command in the Reference
Guide.

PassErr Passes an error to the next level of the Try...EndTry block.

Getting Started with the Program Editor

28




General Information
Online Help

education.ti.com/eguide

Select your country for more product information.

Contact Tl Support

education.ti.com/ti-cares

Select your country for technical and other support resources.
Service and Warranty Information

education.ti.com/warranty

Select your country for information about the length and terms of the warranty or
about product service.

Limited Warranty. This warranty does not affect your statutory rights.
Texas Instruments Incorporated

12500 Tl Blvd.

Dallas, TX 75243

29 General Information


https://education.ti.com/eguide
https://education.ti.com/ti-cares
https://education.ti.com/warranty

	Getting Started with the Program Editor
	Defining a Program or Function
	Viewing a Program or Function
	Opening a Function or Program for Editing
	Importing a Program from a Library
	Creating a Copy of a Function or Program
	Renaming a Program or Function
	Changing the Library Access Level
	Finding Text
	Finding and Replacing Text
	Closing the Current Function or Program
	Running Programs and Evaluating Functions
	Getting Values into a Program
	Displaying Information from a Function or Program
	Using Local Variables
	Differences Between Functions and Programs
	Calling One Program from Another
	Controlling the Flow of a Function or Program
	Using If, Lbl, and Goto to Control Program Flow
	Using Loops to Repeat a Group of Commands
	Changing Mode Settings
	Debugging Programs and Handling Errors

	General Information

