Creating: Solving Systems by Graphing Math Nspired

Activity Overview

In this activity, you will create a new document with a Graphs application which contains a system of equations that can be used to illustrate solving a system by graphing.

Materials

- Technology needed (TI-Nspire ${ }^{\text {TM }}$ handheld, computer software)

Step 1: Preparing the title page

1. Create a new document: pressing $\left\{\begin{aligned} \text { on }\end{aligned}\right.$ New Document > Add Notes.
2. Type Solving Systems by Graphing.

Note: To create capital letters, press ثrshift, then the letter.
Sols
3. Press doc > File $>$ Save As

Type: Solving_Systems_by_Graphing.
Tab to [save’, and press enter.
Note: To create underscore, press atril \triangle.

Step 2: Adding the Graphs application

1. Add a graphs application: press ctri doc- $>$ Add Graphs

Step 3: Graph two lines

1. To graph the line $y=x+1$, press $\boldsymbol{X} \pm$ enter.
2. To bring up the $\mathrm{f} 2(x)$ entry line, press tab.
3. With the cursor in the $\mathrm{f} 2(x)=$ entry line, graph the line $y=-x+3$ by pressing $(-\rightarrow) \mathbf{X}$ enter.
4. To add a dot grid, select Menu > View > Grid > Dot Grid.

Creating: Solving Systems by Graphing Math Nspired

Step 4: Create a point that moves

1. To create a point that is on a grid mark and on the x-axis, select Menu > Geometry > Points \& Lines > Point On.
2. Move the arrow near a tick mark on the x-axis until you see stm and "grid tab." Press tab. You will see "axis tab."
3. Press enter twice.
4. Press esc .

Step 5: Create a perpendicular line to the x-axis

1. To graph a line through this point that is perpendicular to the x axis, select Menu > Geometry > Construction > Perpendicular.
2. Move the cursor until you see stm and "point tab". Press enter. A dotted line will appear.
3. Move the cursor until you see sm and "axis x ", and the x-axis has become bold. Press enter. Press esct.

Step 6: Construct two points of intersection

1. To find the intersection points of the vertical line with the graphs of $\mathbf{f} 1(x)$ and $\mathbf{f} \mathbf{2}(x)$, select Menu > Geometry > Points \& Lines > Intersection Point(s).
2. Move the cursor to anywhere on the graph of $\mathbf{f}(x)$ until you see sma and "graph f 1 ", and the line for f 1 is bold. Press enter.
3. Move the cursor to anywhere on the vertical line until you see stm
 and "line". The vertical line will be bold and the point of intersection will appear. Press enter.
4. Move the cursor to anywhere on the graph of $\mathbf{f} 2(x)$ until you see ${ }^{n}$ and "graph f2", and the line for $\mathbf{f} 2$ is bold. Press enter.
5. Move the cursor to anywhere on the vertical line until you see stm and "line". The vertical line will be bold, and the point of intersection will appear. Press enter Press esc.

Liz Creating: Solving Systems by Graphing Math Nspired

Step 7: Display the coordinates

1. To display the coordinates of the points of intersection, select

Menu > Actions > Coordinates and Equations.
2. Move the cursor to the point of intersection of $\mathbf{f 1}$ and the vertical line until you see $s^{\text {th }}$ and "point tab". The point will become bold and the ordered pair will be displayed faintly. Press enter twice.
3. Move the cursor to the point of intersection of $\mathbf{f} 2$ and the vertical line until you see st and "point tab". The point will become bold and the ordered pair will be displayed faintly. Press enter twice.
4. Press esc.

Step 7: Hiding the Vertical Line

1. To hide the vertical line from view, press Menu > Actions > Hide/Show.
2. Move the cursor to the vertical line until the vertical line becomes bold and you see and "line."
3. Press 宽. Press esce.

Step 8: Save the Document
Press ctrls.

