Problem 1 – Acceleration Due to Gravity

The function $t = \sqrt{\frac{2d}{g}}$ models the time, t, in seconds it

takes for any object at rest to fall a distance, d, in meters neglecting air resistance and friction.

Enter this equation next to Y1 in the $\boxed{Y=}$ window (with $g=9.81 \text{m/s}^2$). Press $\boxed{200\text{M}}$ and select **ZStandard** to view the graph.

Note: *y* will replace *t* and *x* will replace *d*.

- **1.** What restrictions should be placed on the function $y = \sqrt{\frac{2x}{9.81}}$ given its real context?
- 2. Using the graph, press TRACE to determine how much time will elapse for the fall of an object being dropped from a height of 200 m above the ground?
- **3.** Is there a maximum value for this function? Explain your reasoning.

A comparison of acceleration due to gravity for various bodies is provided to the right.

Acceleration due to gravity is provided in m/s².

Gravity
274.13
3.59
8.87
9.81
1.62
3.77
25.95
11.08
10.67
14.07
0.42

Go back to the Y= screen and again graph $t = \sqrt{\frac{2d}{\varrho}}$.

This time let d = 20 meters, and let x replace g. Observe the times required for an object to fall from a height of 20 meters.

It's A Radical, Rational Universe

Use TRACE to answer the following questions.

- 4. On which of the given bodies will the 20 meter fall require the **most** time?
- 5. On which of the given bodies will the 20 meter fall require the least time?
- **6.** How much time will the fall of the object from a 20 meter height require on Earth?

Problem 2 – Solution Dilution

Chemists often have to dilute existing solutions to create new solutions using up solutions they have on hand.

5 liters of a 10 molar solution of hydrochloric acid is diluted with *x* liters of a 2 molar hydrochloric acid solution. This concentration adjustment may be modeled with the equation

$$M(x) = \frac{5 \cdot 10 + x \cdot 2}{5 + x}$$

M(x) is the concentration in molarity for a solution prepared using 5 L of the 10 molar solution and x Liters of the 2 molar solution.

Enter this equation next to Y1 on Y= screen.

Press WINDOW and set the **Xmin** to 0 and the **Xmax** to 300.

Press GRAPH and then press TRACE to help answer the questions below.

- 7. Given $M(x) = \frac{5 \cdot 10 + x \cdot 2}{5 + x}$, what is the highest possible concentration for this situation?
- **8.** What is the lowest possible concentration approached in this situation?
- **9.** Does any part of the graph *not* make sense in the real context of this problem? If so, explain.